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Monotone Empirical Bayes Tests 

Based on Kernel Sequence Estimation x 

Shanti S. Gupta       and      Jianjun Li 

Abstract: Empirical Bayes inference problems involve the estimation of unknown functions 

(a density and its derivative). It is well known that this can be done through the kernel 

method, i.e. using a fixed index kernel and varied window bandwidth. In this paper, we 

introduce the kernel sequence method which considers using a sequence of kernel functions 

and allows the kernel index and window bandwidth to vary simultaneously in the estimates. 

This method usually produces better estimates since varied kernels give us more flexibility 

to do so. 

We apply the above method to the construction of the monotone empirical Bayes test for 

the general continuous one-parameter exponential family. The rule we construct is shown to 

have a rate of convergence of (In n)3+t/n for any e > 0. This rate is a substantial improvement 

over the previous results. Note that this rate is much closer to 1/n, which is proved here to 

be a lower bound for the monotone empirical Bayes tests. So the rule has good large sample 

behavior. Since the rule is monotone, it also has good performance for small samples. 

iThis research was supported in part by US Army Research Office, Grant DAAD 19-00-1-0502 at Purdue University. 

AMS ClassiBcation: 62C12. 

Keywords:   Empirical Bayes, regret Bayes risk, optimal rate of convergence, minimax. 



1. Introduction. Assume that X is an observation from the distribution with density 

f(x\6) = c(6) exp{9x}h(x), -co < a < ;r < 6 < +00, (1.1) 

where h(x) is continuous, positive for x € (a,b), 9 is the parameter, which is distributed 

according to an unknown prior G on the parameter space Ü, a subset of the natural parameter 

space {9 : c{0) > 0}. 

We consider the problem of testing the hypotheses H0 : 9 < 90 versus Hx : 9 > 90, 

where 90 is known. The loss function is 1(6,0) = max{0 - 0O,O} for accepting H0 and 

1(9,1) = max{0o - 6,0} for accepting Hi. A test S(x) is defined to be a measurable mapping 

from (a,b) into [0,1] so that 6(x) = P{ accepting HX\X = x], i.e., 6(x) is the probability of 

accepting Hx when X = x is observed. Let R(G, S) denote the Bayes risk of a test 5 when 

G is a prior distribution. Let <f>G(x) = E[6\X = x\. Given that E[\6\] < oo, a Bayes test 5G 

is found as 

<5c(x) = < (L2) 
0    if 4>G(x) < Bo- 

Because <pG(x) involves G, the above solution works only if the prior G is given. If G is 

unknown, this testing problem is formed as a compound decision problem and the empirical 

Bayes approach is used. Let XuX2l- ■• ,Xn be the observations from n independent past 

experiences and let X be the present observation. Based on Xn = (Xx, X2, • ■ •, Xn) and X, 

an empirical Bayes rule 6n(X, Xn) can be constructed. The performance of 5n is measured by 

R(G,5n) - R(G,8G), where R(G,5n) = E[R(G,Sn\Xn)}. The quantity R(G,5n) - R(G,5G) 

is referred as the regret Bayes risk (or regret) in the literature. 

Denote aG(x) = J c(9)exp(9x)dG(6), ^G(x) = J 9c(9)exp(9x)dG(9). It is clear that 

4>G(X) = MX)/<*G(X) and 4>G(x) > 90 <=> w(x) = 60aG(x) - i)G(x) < 0. So the construc- 

tion of 5n involves the estimation of aG(x) and <pG(x). This is usually done using the kernel 

method. In this paper, we introduce the kernel sequence method and apply it to obtain the 



estimates of aG(x) and 4>G{X). The kernel sequence method considers using a sequence of 

kernel functions, and the kernel index and window bandwidth are allowed to vary simultane- 

ously in the estimate(s). This method usually produces better estimates since varied kernels 

give us more flexibility to do so. 

Based on the estimates of aG{x) and <f>G(x), we construct an empirical Bayes rule 6n for 

the testing problem mentioned above. Then we show that 5n has a rate of convergence of 

(In n)3+7n for any e > 0 with the assumption E[\6\] < oo, which is a substantial improvement 

over the previous results. Note that this rate is much closer to 1/n, which is proved here to 

be a lower bound for the monotone empirical Bayes tests. So the rule has good large sample 

behaviour. Since the rule is monotone, it also has good performance for small samples. 

The readers interested in empirical Bayes approach may refer to two introductory papers 

of Robbins (1956, 1964). For the above empirical Bayes testing problem, Johns and Van 

Ryzin (1972) made an early contribution. Van Houwelingen (1976) used the monotonicity 

of the problem and constructed the monotone empirical Bayes tests, which achieve the rate 

of 0(n-2r/(2r+1)(ln7?)2) if £[|<9|r+1] < oo. Van Houwelingen also showed that his rules have 

a good performance for small samples since they are monotone. Karunamuni and Yang 

(1995) studied monotone rules and their asymptotic behavior. With one more assumption 

CG € [-A,i4], they obtained the rate of 0(rr2r/(2r+1)). Karunamuni (1996) tried to find 

the optimal rate of convergence of the monotone empirical Bayes rule. But he failed; see 

Liang (2000a) and Liang (2000b), Gupta and Li(2000). Another related work is from Stijnen 

(1985). He studied the asymptotic behaviour of both the monotone empirical Bayes rules 

and non-monotone rules. 

This paper is organized as follows: In Section 2 we introduce a few preliminary results. 

In Section 3 we introduce the idea of kernel sequence method. In Section 4, we construct 

the monotone empirical Bayes test 8n and obtain its rate of convergence. Section 5 gives a 



lower bound of monotone empirical Bayes tests, which is n_1. Section 6 contains the proofs 

of the main results in Section 4 and Section 5. In the appendix, we provide the proofs of a 

few lemmas used in Section 6. 

2. Preliminary. We assume / \8\dG{6) < oo throughout this paper. Note that aG(x) and 

4>G{x) exist for all x G (a,b) under the assumption f \9\dG(d) < oo. Therefore they are 

infinitely differentiable for x G (a,b). Furthermore, <p'G{x) > 0 and 4>G(x) is an increasing 

function. If limxla<j)G(x) > 0O, then <pG(x) > 0O and 5G(x) = 1 for all x G (o,ft); If 

limlT6 <f>G(x) < 0O, then <f>G{x) < 0o and SG{x) = 0 for all x G (a, 6). In both cases, we 

call that 8G{x) is degenerate. We assume that SG{x) is non-degenerate in the following, i.e., 

we assume that limxla<fc(.x) < 0O < limx]b <J)G{T). Then G is non-degernate and <f>'G(x) > 0. 

Therefore there exists the unique point Qj € (a, 6) such that 4>G(x) > 90 for x > CG, 

(PG(x) = 60 for x = cG and <j>G(x) < 6>0 for x < CG (see Van Houwelingen (1976) and others). 

Note that w(x) = d0aG{x) - Vc(a:)- Then CG 
is the unique root of w{x). 

Based on the previous discussion, the Bayes rule stated in Section 1 can be represented 

as r 

1    if d>G(x) > 0o <=> w(x) < 0 <=> X>CG, 
SG{x) = I (2-1) 

0    if <pG(x) < 0o ^=> w{x) > 0 <=> x < CG. 

Noting that the Bayes rule 5G is characterized by a single number CG, a monotone empirical 

Bayes test (MEBT) can be constructed through estimating CG by cn(Xi,X2, ■ ■ ■ ,Xn), say, 

and defining 

)1     if      x > cn, 
(2.2) 

0     if      -r < c„. 

Then the regret of 5n is 

R(G, Sn) - R{G, SG) = ^ /CG w(a:)Ä(a;)dx. (2-3) 



Remark 2.1. The assumption that 8G(x) is non-degenerate is not crucial in this empirical 

Bayes testing problem. It can be reduced for the particular case of (1.1); see Gupta and Li 

(2000). 

3. Kernel Sequence method. The kernel method has been used by many authors over 

the years. Here we introduce the kernel sequence method which uses a sequence of kernel 

functions instead of the single one. As the number of observations n increases, the kernel 

function and the kernel window bandwidth are set to vary simultaneously. 

For each i = 0,1 and m = 1,2, ■ • •, let Kim(y) be a Borel-measurable function such that 

Kim(y) vanishes outside the interval [Aim, Bim], and for Kom(y) 

= 1   if    j = 0, 

yJK0m{y)dy{   = 0   if    j = 1, 2, • • •, m - 1, • ■ ■, k,m ~ 1, t3-1) 

7^ 0   if    j = k0m, 

and for K\m(y) 

= 0   if    j = 0,2,3, ■•• ,m. ■■■ ,k\m — 1. 

yJKim{y)dy{  =i   if    j = l. (3-2) 

± 0   if    j = klm. 

Let u = un be a sequence of positive numbers and v = vn be a sequence of positive integer 

numbers. For any x € (a, 6), define 

nu u nuA u 

For u and u being properly chosen, a„(x) and ipn(x) are the estimates of ac{x) and ^(a;) 

respectively. In these kernel estimates, u is called the kernel (window) bandwidth and v is 

called the kernel index. 

Note that the kernel indices of functions K&, and Klv will change as n increases.  The 

method here is a little different from the traditional fixed index kernel method. Here both 



the kernel indices and window bandwidths vary in the construction. 

4. MEBT For General Exponential Family. We use the idea of the kernel sequence 

method to find the estimators of aG(x) and ii-c(x). Then we construct cn based on these 

estimators. 

We present the two sequences of kernel functions used in this paper. Define K0v as follows: 

For odd v, KQv{y) = K0(v+i){y)] for even v, 

pvy
v + pv-iy

v~l + ■ ■ ■ + Po,    if — 1 < y < 1, 

0, otherwise, 
KoM = (4.1) 

where 

Pi = S 
0, if i is odd, 

I ,(t+1)2^u(,)ip(^)!(W    if i is even. 

Define Klv{y) as follows: For even v, Klv{y) = Kl{v+l)(y)\ for odd v, 

(-iy!2v\(v + iV.v(v-i) 

KM = 
qvy

v + Qv- \y 

0, 

,i—i 

where 

0, 

+ qo,    if - 1 < y < 1, 

otherwise. 

if i is even. 

(4.2) 

Qi = 

Then KQv(y) defined by (4.1) satisfies (3.1) with A0v = -1, B0v = 1, fco„ = v if v is even 

and kov = v + 1 if v is odd; Klv(y) defined by (4.2) satisfies (3.2) with Alv = -1, Blv = 1, 

kiv = v if v is odd and klv = v + 1 if v is even; see Gasser, Müller and Mammitzsch (1985). 

Let tn be a sequence of positive numbers with en —> 0. Denote u = un = el/3. Let v = vn 

be a sequence of integer numbers such that uv ~ n-1. For any x E (a, 6), define 

<>„(*) = - E K^^-yhiXj), vn(x) = ±± KU^^)IKX3).       (4.3) 
nu u nu' u 

It is shown later that an(x) and <pn{x) are consistent estimators of aG{x) and <fc(x) respec- 

tively. Therefore Wn{x) = 90an{x) - i/jn{x) is a consistent estimator of w(x). 



Since cG is the unique root of w(x), we are going to use Wn{x) to construct <v Before 

doing this, let us examine SG. Note that 5G is a monotone rule. If x is larger than cG, we 

accept Hü If x is smaller than cG, we accept H0. Since G is unknown, we do not know at 

which point we should accept H0 or reject it. But. one will be more likely to accept Hx if 

the present observation x is quite large and accept H0 if it is quite small. By knowing this, 

we want to find two numbers cln and c2„ such that we accept Hx if we observe x > c2n and 

accept H0 if we observe x < Ci„. Here both cutoff points cin and c2„ depend on n. This could 

be understood as follows. As n increases, we have more information from the accumulated 

data, and we should adapt new cXn and c2„ so that our decision can be made more precisely. 

Once proper Ci„ and c2„ are found, we can concentrate our effort on x e [cin,c2n] in our 

construction. 

The idea of splitting (a,b) into {a,cln), [cln,c2„] and (c2n,6) is called the localization 

technique. To implement the localization technique, the following lemma is necessary. 

Lemma 4.1. Four sequences of numbers {an.än,bn,bn} can be found such that an | a, 

bn t b, and as n is large 

(i) -[(In Inn) An"1] < an < bn < [(In Inn) A u-1]; 

(ii) minan<x<6n h(x) > u\ 

(iii) J£ h(t)dt > 2u, ft h(t)dt > 2u. 

Let ci„ = On + u + u1/3 and c2n = bn - u - u1/3. From Lemma 4.1, we know that ci„ i a 

and c2n T b. So cG \\ill fall in {cln,c2n} for large values of n. Then we define c„ as in the 

following: 

Cn = /     I[w„(x)>o]da; + Cin. (4-4) 
•'Cl„ 



A monotone empirical Bayes test 6n(x) is now proposed as follows: 

t  > 

It is obvious that c„ G [cln,c2„]. So if x > c2n, we will accept Hu and if x < cIn, v.-.. will 

accept i*o- If z € [ci„. c2n], we will calculate c„ and compare x with cn to make the deu.siuii. 

The use of the localization technique helps us avoid the boundary effect of kernel estimates. 

It gives us nice bounds on the moments of Wn(x) for x € [cln,c2n](see Lemma 6.3 below). 

Also it results in a nice lower bound of \w(x)\ for x G [ci„, cc - ec] U [CG + eG, c2„] and eG > ° 

(see Lemma 6.2 below), which is crucial to get the desired rate of convergence in Section 6. 

For more uses of this technique, please see Gupta and Li (1999a), Gupta and Li (1999b), 

Gupta and Li (2000) and Li and Gupta (2000). 

Note that since Wn(x) is an estimate of w{x), a natural construction of the empirical 

Bayes rule should be 6n = 1 if Wn(x) < 0 and Sn = 0 if Wn{x) > 0. Unfortunately this 

construction will lead to a non-monotone rule. So we use the integration of I[w„(x)>o\ m 

(4.4) instead. This technique is borrowed from Brown, Cohen, and Strawderman (1976), 

Van Houwelingen (1976) and Stijnen (1985). 

Now we study the large sample behaviour of Sn. The next two lemmas enable us to 

express the regret of <5n through c - CG- 

Lemma 4.2.   W'(CG) < 0. 

Since w'{x) is continuous in (a, 6), we can find NIG(CG), a neighborhood of cG, such that 

NeG(cG) C (cln,c2n) C (a,b) ( as n is large), and At = minieJVec(co)[-i//(x)] > 0. Denote 

T]I—CG-€G and rj2 — CQ + £G in the following. 



Lemma 4.3. Let h = sup{/i(x) : x € [T/I^]} and w = sup{-u/(x) : x e [T?I,%]}-  Then 

R(G, Sn) - R{G. 8G) < l/ihwEicn - cG)2 + (ö0 + E{\8\})eG4E(cn - cG)4. 

Following (4.4) and CG e [ci„, c2„], we have cn-cG = - J^ I[wn(x)<o\dx + f%? I[wn(x)>o]dx. 

So a upper bound of cn - CG is easy to obtain through the properties of Wn(x) and w(x). 

Note that Wn(x) can be written as 

Wn(x) = \ E ^(JO, x),  where K(^, x) = ^ •    ^     - ^ "     ^    ■ 

For fixed n and x, Vn{Xj,x) are i.i.d. random variables. So Wn(x) is the sum of the i.i.d. 

random variables. After applying the results in Petrov (1995), we have the following result. 

Lemma 4.4. limn_>0O[nen(lnn)3
JE;(cri - ccf] = 0,    lim«-«,[nen(In nfE{cn - cG)4] = 0. 

The proofs of Lemma 4.1-4.4 are given in Section 6. Lemma 4.3 and Lemma 4.4 lead us 

to the following theorem. 

Theorem 4.1.   Assume that J \9\dG(6) < oo and the Bayes rule 8G is nondegenerate. 

Then for any e > 0, R{G,5n) - R(G,5G) = o((lnn)3+£/n). 

Remark 4.1. In this paper, we get a faster rate of convergence for the general exponential 

family. This is mainly due to the use of the kernel sequence in the construction of estimate 

of w{x). The previous papers in the literature constructed the empirical Bayes rules based 

on the kernel estimation with fixed kernel functions and varied window bandwidths. So 

the resulting rates are not fast. Now we let kernel functions and window bandwidths vary 

simultaneously. Then a better rate of convergence is obtained. 

Remark 4.2. To apply the kernel sequence method, a key question is how to construct 
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this sequence of kernel functions. In this paper we use the result obtained by Gasser, Müller 

and Mammitzsch (1985). We expect that the rate here will be improved if a "better" kernel 

sequence is found. 

Remark 4.3. Note that the rule 6„ is monotone. It has the weak admissibility ( see Van 

Houwelingen (1976)). So it also has good performance for small samples. 

Remark 4.4. The result (4.6) is a rate of convergence for the general distribution (1.1). 

For some special member of the exponential family, the special property of that family 

member may be incorported in the construction. Therefore, a better rate can possibly be 

obtained. See Liang (2000a) and Liang (2000b), Gupta and Li (2000). 

5. Lower bound. We shall prove that 1/n is a lower bound for any MEBT even if 6 is 

bounded. 

As presented in Section 2, the problem of constructing a monotone empirical Bayes rule 

is essentially equivalent to finding an estimator c* of cG, a functional of the marginal dis- 

tribution fG{x) of X, based on the i.i.d. sample Xu ■■■,Xn. So a lower bound of MEBT's 

can be found through obtaining a lower bound of c* going to CQ. This will be done using 

the ideas from Donoho and Liu (1991) or Fan (1991) and then constructing carefully the 

hardest two-point subproblem. In the following, lu h, • • ■ stand for the positive constants, 

which may have different values on different occasions. 

Let Q be the set of prior distributions with bounded supports inside [90 - 6d, #o + 0d] Cfl 

for some 6d > 0. Let C be the set of estimators c*n of cG ( a < c*n < b ) and V be the set 

of empirical Bayes rules of type (2.2) with cn = c*n G C. In order to find a minimax lower 

bound of MEBT's over Q, we first define Q0, a subset of Q. 
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Denote 0Oi = 60 - 6d/2 and 0O2 = #o + 0d/2. Choose any CQ € (a, b). Let 

go(0) = m0exp(-öco)/c(Ö)/[öol<ö<eo2],     #i(ö) = m1exp(-öxd)g0(ö), 

where (i) m{ is normalizing constant satisfying /#(0)d0 = 1 for i = 1, 2, (ii) x<i satisfies that 

u^(x) < l/2^(co) < 0 for all x G [Q, - xd, Co + xd] C (a, 6), w0(x) = w{x) associated with 

G~go (dG(6) = g0(9)de). Let T = {fG(x) = f f{x\d)dG{9): G e So}, where 

g0 = {G : G ~ g = (1 + Vm)_1[>/™0i(ö) + 9ö(ö)]»m = °>X>''' > °°}- 

The next lemma tells us that finding a lower bound of MEBT's is equivalent to finding a 

lower bound of the hardest two-point subproblem. 

Lemma 5.1. Let Q be the critical point corresponding to fi}i = l, 2. Then 

inf   sup[R(G,5*n)-R{G,6G)} 

> inf    swp[R{G,6'n)-R(G,5G)] 

> hsnp{(c1-c2)
7:J[^K^)-^/h^)]2dx<l2/n,   hJ2eT). 

The lemma 5.1 is proved based on a result of Donoho and Liu (1991). From this lemma, 

we need to identify /i and f2 in T to find the minimax lower bound. 

Lemma 5.2.   Let g2{0) = (1 + ^ßYl[y/n~gi{0) + flb(ö)]. Let ft(x) = / f(x\6)gi(6)d9 for 

t = 1,2. Then/i € T and 

J[y/m ~ yfhWfdx < £, (c2 - Cl)
2 > £. 

As a natural conclusion of Lemma 5.1 and Lemma 5.2, we have the following theorem. 

Theorem 5.1. For some I > 0, inf5.GüSupGee[fi(G,^) - R(G,8G)] > l/n. 
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Remark 5.1. A natural question for empirical Bayes inference problems is: what is a 

lower (or the best lower) bound of monotone empirical Bayes rules for general exponential 

family. For empirical estimation problem. Singh (1979) conjectured that n-1 is a lower bound 

and also it is not obtainable even if 6 is bounded. For the testing problem, we know now 

that n_1 is a lower bound for the monotone empirical Bayes rules. 

Remark 5.2. Since the optimal rate of monotone rules for N(6,l) is (Inn)15/« ( see 

Gupta and Li (2000)), n"1 may not be the best lower bound or obtainable lower bound for 

general exponential family (1.1). Also we believe that it is not possible to find the obtainable 

lower bound for family (1.1) once. It must be done for each distribution individually and 

the information stored in that particular distribution must be incoporated. 

6. Proofs. We shall prove the results in the previous sections. First we state some 

lemmas which will be used in this section. Their proofs are provided in the appendix. 

6.1. Some Lemmas. As n is large, we have the following lemmas. 

Lemma 6.1. Let ä„ = max{aG(a:) : x G [an,bn]}. Then an < (2u)_1. 

Lemma 6.2. For x G [cln,c2„], \w{x)\ < 2/u2; 

For x G [ci„,7/i] U [rfc.czn], \w(x)\ > M ■ u(\nn)-B, where M > 0, B > 0. 

Lemma 6.3. Let wn(x) = E[Vn{Xj,x)], Zjn = Vn{Xj,x)-wn(x), a2
n{x) - E[\Zjn\2} and 

7n(x) = £[|ZJTl|
3].  Then 

(i) For x G [ci„,C2„], \wn(x) - w(x)\ < 1/y/n. 

(ii) For x G [cln,C2„], <Jn(x) < hv^u-V2- for x G [Vi,mi h < ^{x) < k(v/u)^2. 

(iii) Forxe [cln>C2„], 7n(x) < hvnS6v
U-6. 
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Lemma 6.4. Let dn = ^Jv^/nu3. For x <E [ci„,c2n], 

w(x) >dn^ wn{x) > w(x)/2, w{x) < -dn => wn(x) < w(x)/2. 

6.2. Proof of Lemma 4.1. Lemma 4.1 is obvious intuitively. We also give a rigorous 

proof here. Let h{a+) = limxia h(x) and h(b-) = limlT6 h(x). Choose any £ e (a, 6). Let 

ha = 

hh= < 

max{a < x < £ : h(x) < u} if h(a+) = 0, 

a if 0 < h(a+) < oo, 

min{£ < x < b : A(x) < u} if /i(fc-) = 0, 

b if 0 < h(b-) < oo, 

And 

&=< 
max{a < s < £ : J* &(*)<** < M    if J* /i(t)dt < oo, 

a if /i /i(t)d* = oo, 

Sb = 
min{£ < x < 6 : J* h(t)dt < 2u}     if $ Ä(t)dt < oo, 

b if j£ h(t)dt = oo. 

Then we define a„ and ftn as follows: 

an = ha V Sa V (a + 1/n) V (- In Inn) V (-1/«), 

bn = /i6 A 56 A (b - 1/n) A (In In n) A (1/u). 

And let 

an = \ 

bn = 

a if Ji Ä(t)dt < oo, 

xa e {a < x < £ : /;" fc(t)dt > 2u}     if £ &(*)<** = oo, 

, if $ h(t)dt < oo, 

xbe{t<x<b:fc h(t)dt > 2u}    if /| fc(t)dt = oo. 

Then it is easy to see that an [ a, bn | 6, (i), (ii) and (iii) in Lemma 4.1 hold. 
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6.3. Proof of Lemma 4.2. Note that aG{x) is infinitely differentiable, a'G{x) = tpG(x) 

and w'(x) = 6QMx) - #;(*)• If MCG) = 0. then W'(CG) = - J e2c(6)e0^dG(6) < 0. If 

^G{CG) > 0, by Jesen Inequality ^'G{CG)/^G(CG) > ^G{CG)I'aG(ca) = do- Thus w'(cG) < 0. 

Similarly, if I/JG(CG) < 0, w'(cG) < 0. The proof of Lemma 4.2 is complete. 

6.4. Proof of Lemma 4.3. From (2.3), 

R(G,6n)-R(G,8G)   <   E[I[lCn^]>ec] [
CGw(x)h(x)dx) + hE[I[lc^ccl<eG] f    w(x)dx] 

<   {9o + Pc)&E(cn - CGY + l/2hwE(cn - CG)\ 

where f£ w{x)h{x)dx < (0O + ßG) and by Taylor expansion 

hc~-cc\<*G\   r W^dX = _1/2 X W'^)(Cn - CG?hcn-cG\<ea] <  l/2Ü>(c„ - Ccf ■ 

6.5. Proof of Lemma 4.4. From (4.4), 

£(cn - cGf < E[ r I[wn(x)<o\dx}2 + E{ fC2n V„(x)>oidz]2 = rm + r2n- (6.1) 

It turns out by Holder inequality and a little algebra that 

rin<2(c2n-cln)/1 + 2/2 + 273, (6.2) 

where h = $nP(Wn{x) < 0)dx, I2 = (/„<? I^^dx)2, h = E{$£ I[Wn(x)<o,u,(*)>dAdx?■ 

For w(x) > dn, wn(x) > l/2w(x) from Lemma 6.4. Then we have 

Pmx) < o) - P<   '   £*» < 3^W) < Pi'tz, < 3^W). 

Applying Theorem 5.16 on page 168 in Petrov (1995) to the LHS of the above inequality, 

P(H,w < 0) < ..A!, + ^%^ s «.(x) + r.(x,.     ,«) 

where A is a constant and $(•) is the cdf of N(0,1). Forx€ [ci«,^], tw(x) > Mu(lnn)-ßand 

certainly w(x) > dn as n is large. Also note that an < ku'^v^2 and 7„(z) < /4v
1336vu-6. 
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It follows that Sn{x) < ^(-n1/4) and Tn(x) < n-3/2 for large n. Thus 

(cä„ - cln)h = (C2n - clB) ^ P(Wn{x) < 0)dx = o(n-1). (6.4) 

For x G [TJUCG], \W'{X)\ > Ae. Thus J2 < Af[Jm
c h™{x)<d»]w'(x)dx?■ Letting y = w(x)/dn, 

h < A;2dl J™ I[y<ndy = A?#n. Therefore 

l2 = 0(d2
n) = o((lnn)3/(nen)), (6.5) 

By Holder inequality again, 

/a< r P{Wn(x)<0)[w{x)f2I[w(x)>dn]dxx rHx)}-3/2I[w{x)>dn]dx. 

Letting y = w{x)/dn, J^f [w{x))-3l2I[w{x)>dn]dx < 2/[Aey/cQ.  Using the previous two in- 

equalities and (6.3), we have 

h < 2/(Aedn
l/2){ r Sn(x)[w(x)f2dx + r Tn(x)[w(x)f2dx}. (6.6) 

Jm Jm 

For x e [VUCG], k<vn< h^v3/u3 and 7n(x) < Z^1^"«-6. Therefore 

/    5n(i)«;5(x)dx < — /    $( -—^-^wix^dwix) < ' $(-y)y*dy, 

(6.7) 

and 

r°m/ xr   / Ma/a,   ^ 8AZ4v13361' /■«>     y3/2      , ,RQ, 

Combining (6.6)-(6.8), we have J3 = o((lnn)3/(nen)).  This together with (6.4) and (6.5) 

yields rin = o((lnn)3/(nen)). Similarly r2n = o((lnn)3/(nen)). Then £(c„ - ccf = 

o((lnn)3/(nen)). Similarly, E(cn - cG)4 = o((lnn)3/(ne„)). This completes the proof of 

Lemma 4.4. 

6.6. Proof of Lemma 5.1. Let Wi(x) = w(x) with G ~ gv Then wi(x) = miw0(x-xd) 

and ci = Co + £<*.   Since wi(co) > 0 and tu0(ci) < 0, CG € [co,ci] for G e £o-   Since 
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w'0(x) < l/2w'0{co) for x e [c0-xd,c0 + xd).. -w'{x) > -{m, A 1KM/2 = w > 0 for 

x G [co,Ci] and G 6 (?o- 

Let C = {< V Co A ci : < € C}. For < G C, denote c„ = <£ V Co A ci. Note that /z(x) is 

bounded on [co,^]. Then for any G G &, Ig w{x)h{x)dx > h fg w{x)dx. From (2.3) 

inf sup[Ä(G,«j;) - R(G,6G)\ > h inf sup E[ f ° w(x)dx]. 

By Taylor expansion, /^ w(x)dx = -1/2 x u/föXc,, - cG)2 > l/2w(c„ - cG)2. Therefore 

inf sup M /"   w(x)dx] > h inf sup E[(cn - CG)
2
]. 

Since CcC, 

inf sup EUcn - CG)
2

} = inf sup £[(c„ - CG)
2

} > inf sup £[« - cc)2]. 
c'n^CG€Go cn£CG€Go ^CG€g0 

From the results in Donoho and Liu (1991) (Theorem 3.1 and the remark after Lemma 3.3), 

inf sup £[« - cGf\ > h sup{(Cl - c2)
2 : /[/fiÖÖ - \[hW?dx < l2/n,    fuf2eT). 

cn^cG€g0 

Then Lemma 5.1 follows. 

6.7.   Proof of Lemma 5.2.   Note that f2{x) - /i(x) = (1 + y/n)  l[-fi(x) + fo(x)], 

where fQ(x) = /c(ö)exp(öx)Ä(x)gö(ö)dÖ. For all x G (a, 6) 

/oOOf/i^r1 = [ r°2 exp(ö(x - cö))dÖ] ■ [my f °' exp(0(x - xd - co))^]-1 < /j. 

Then /[/Mx] - yfh(x)?dx < / [/^x) - /2(x)]2//i(x)dx < U + ^)/n. 

Denote w2(x) = w{x) with G ~ #2. Then tt<2(x) = (1 + ^Yl[yßmyWo{x - xd) + w0(x)}. 

Note that \w'2(x)\ < k for x G (co,cx) and K(Cl)|
2 = [w2{c2) - w2(Cl)}2 < ll{c2-cy)

2, Then 

(c2 - cO2 > l4\w2{Cl)\2 = Z4(l + \/^r>o(ci)]2. The proof of Lemma 5.2 is complete now. 

Appendix. 



17 

Lemma A.l.  The following statements hold. 

(i) \Kiv(y)\ < kvl0W, i = 0,l,kis some constant. 

(m)v-*f\Klv(y)\2dv-+@*)-1. 

Proof, (i) is obtained by simple calculations. It is omitted here. From our definition of 

K0v and Klv, and Theorem 1 of Gasser, Müller and Mammitzsch (1985), for an even v 

/•i     o v2\(v - 1V12 f1    o , x v2\(v +1)!!]2 

Since s[(2s - l)!!]2/[(2s)!!]2 -► TT
1
 as s -> oo, (ii) and (iü) are obvious. The case of odd v 

can be proved similarly. 

Proof of Lemma 6.1. Note that aG(x) = f 62c(6)eBxdG{e) > 0 for x G (a, 6). Then 

aG(x) is a convex function and än = aG(an) V aG(bn). We prove aG(an) < (2u)_1 in the 

following. The proof of aG(bn) < (2U)'1 is similar. Since c(6) = l/{J*h(x)eexdx} and 

aG(an) = Jc{d)eea"dG(e), it follows 

aG(an) < f      -j dG{9) + [       fan , . . m ^TdG^- GV nl ~ J[8>o] jj» h(x) exp(0(x - an))dx ■/[<>«>] C &(*) exp(0(s - an))dx 

Note that j£ exp(0(x - an))h(x)dx > 2u as 6 > 0 and J£ exp(0(:c - an))/i(x)rfa; > 2u as 

0 < 0 from Lemma 4.1. Then Lemma 6.1 holds. 

Proof of Lemma 6.2. Since ipG(x) = f 6c(8) exp(0x)dG(0) and u|0| < exp(u|0|), 

hM*)l < «-1[ /      c{6) exp(0(:r + u))dG{6) + [     c(0) exp(0(a; - u))dG{8)}. 
J[0>O] J[6<0] 

From Lemma 6.1, for x £ [cln, c2n], aG{x) < l/(2u). Then \ipG{x)\ < l/u2 and |iw(x)| < 2/u2 

as n is large. Assume that B > 0 such that Jm<B]dG(e) > °- Denote ftB = Q[\9\ < B\. 

Since l/c(0) is a convex function of 6 on O and therefore c(6) is bounded on QB- Thus 

/nB c(0)dG{9) is finite. 
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Recall that w(x) = aG{x){90 - 4>G{X)\- Since <f>G{x) is increasing and <fc(cG) = 0, then for 

x G [ci„,77i], 60 - 4>G(X) >do- oG{vi) > 0; for x G [m,c2n], <PG(X) - 80 > oG{rl2) ~ 00 > 0. 

For x G [cln,c2„], |rc| < In Inn and 

<*G(X)> [   c(8)exp(-9\\n\nn\)dG(8)>{\nn)~B f   c(9)dG{9). 

Let M = {[0o - Mvi)} A [<PG(V2) - 8o}} • JnB c{0)dG(6). Then Lemma 6.2 is proved. 

Proof of Lemma 6.3. We prove (i) for even v only. It is similar for odd v. Using Taylor 

expansion of e6ux, simple calculations show that 

E\^^\ = j c(8)e^dG(0) + u-jrc^ijl K^e6Ut'dt]dG(6), 

and 

E[^WQ] = lec^e6ldG^+«7ÖU+lc(ö)e'*[/-i KX+n"dt]dG{el 

where |i*|, \t**\ < 1. Then E[Vn{Xj,x)} = w{x) + uvl2dn{x) and 

dn(x)   =   80u^2 j'^c(6)eex[f^K,v{t)t
veeut'' dt]dG{9) 

-uv/2 lJ^rAQy9x\ll Klv(t)f
+leeut"dt]dG{B). 

J  (v + lj! J-i 

Since {u^ey/vl < exp(\6\v}'3) and {ul^8)v+l/{v + 1)! < exp^l«1/3), for z G [cln,c2n] 

\dn(x)\   <   v."'6'1 jc{e)eBx+W*+WuU*dG{e) ■ [|0„| J\ \K0v(t)\dt + f_x \Klv(t)\di\. 

<   u^-län{\Öo\[2J\ \KoM\2dy}1/2 + [2J\ \Klv(y)\2dy)1/2}. 

From Lemma A.l and Lemma 6.1, \dn{x)\ -» 0 uniformly for x G [ci„,c2„].   Then (i) is 

proved. Next we prove (ii). For x G [ci„,c2„], h(x + u) > u from Lemma 4.1 and 

a"(x)   -   E[9°   uh(X3)    ~   v?h{X,) 
2 

=   u-3 j f [80uKov(t) - Klv(t)]2c(9)eeieeut[h(x + ut)]-ldtdG(8) 

< l2lU-
4v3 j c{9)e9xeWudG(9) 

< l2lU-
5v3. 



19 

Especially, for x G [771,772], letting h = mm{h(x + ut) : x G foi, %], |i| < 1}, 

a*(z) < hu-'h-'v31 c(9)eexe^udG(e) < iju^v3. 

It is easy to see that <j*(x) > l\.  We prove (iii) next.  From Lemma A.l, for i = 0 or 1, 

\Kiv(t)\ < kvl0Z6v. Also note that \Kiv{t)\ = 0 if |rj| > 1. Then 

|^((y-x)/u)//l(y)|/lcin<I<C2„i < ^10367^(y)/[Cl„<v<C2„+u] < to^'u"1. 

For x € [cln,c2n], £;[|Zin(a;)|3] < 2kv1036v
U-1E[Z?n(x)} < hvl336v

U-6. The proof of Lemma 

6.3 is completed. 

Proof of Lemma 6.4. From lemma 6.3, we have that \wn(x) - w(x)\ < 1/y/n for all 

x G [cln.c2n]. If w(x) > dn and n is large, 

wn(x)      w{x) -dn + dn- \wn(x) - w(x)\ > dn - \wn(x) - w{x)\ > 1 
io(a;)  — w(a;) — dn + dn ~ dn ~ 2 

Similarly, we can prove that w(x) < —dn => wn(x) < w(x)/2. 
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